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Abstract. Using an extension of the Jordan–Wigner transformation (JWT) in two dimensions,
the effects of weak interchain coupling on the spin–Peierls (SP) system is studied. The magnetic
interaction is considered to be a quantumXY -interaction, and the spin–lattice distortion is treated
quasiclassically. On the analogy of the stepped Peierls transition theory, we propose a stepped
SP transition theory. We find that, when any finite transverse couplingJ⊥ is introduced between
nearest chains, the usual SP transition will be modified, and the dimerization and the opening
of the gap will no longer occur simultaneously. This leads to the appearance of a gapless SP
phase over a certain temperature region.

1. Introduction

The spin–Peierls (SP) transition can be described as a progressive dimerization of spin-
1/2 magnetic chains coupled to the three-dimensional (3D) lattice. As the temperature is
lowered, the assembly of uniform chains (the U phase) undergoes a second-order phase
transition atTsp to a system of dimerized chains (the D phase). The main feature of this
state is the appearance of an energy gap between the new ground state—a spin singlet—and
the band of the spin-triplet state. Such a transition was first suggested by analogy with
the conventional Peierls transition in linear conducting chains. Later, this transition was
observed in several organic compounds, such as TTF-Cu(Au)BDT and [MEM(TCNQ)2],
where the unpaired electrons are localized inπ -orbits of the TTF+ and TCNQ− units
of the structure [1]. Most recently, Hase, Terasaki, and Uchinokura [2] found that an
inorganic compound CuGeO3 in which theS = 1/2 spins are localized d electrons of Cu2+

ions undergoes a SP transition at 14 K. Since then it has attracted much attention both
experimentally and theoretically.

Usually, the theoretical investigations of SP transitions have been performed on the
basis of Heisenberg and quantumXY -models. The former includes two successful theories,
i.e., those of Pytte [3] and of Cross and Fisher [4]. In these theories, a fermion representation
via the Jordan–Wigner transformation (JWT) [5] is used to describe the spin-1/2 chain, and
the fermion–phonon interactions are taken into account in the random-phase approximation.
The latter [6], i.e., the quantumXY -model mapped also onto the fermion representation via
a JWT, though less realistic, presents the advantage of being exactly solvable with respect
to the magnetic degrees of freedom. Very recently, Luet al [7] studied the effects of doping
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on SP systems using the unimodular mean-field theory. They concluded that a gapless SP
phase occurs at a certain impurity density.

However, the previous theories only consider the intrachain magnetic interaction, while
they neglect the interchain coupling, which does exist in real SP materials. It is even more
significant for CuGeO3 material. According to Nishiet al [8], the ratio of the interchain
coupling J⊥ to the intrachain couplingJ is about 0.1. This is larger than those in other
quasi-one-dimensional systems (J⊥/J = 1.7× 10−2 for CsNiCl3 [9] andJ⊥/J = 4× 10−4

for Ni(C2H8N2)2NO2ClO4 [10]). We note that Zhou and Gong [11] considered the effect
of the weak interchain coupling on the usual Peierls transition and concluded that the CDW
transition and the associated metal–insulator transition no longer occur simultaneously, but
now occur at different temperatures. This theory not only can be used to explain the
anomalies in some low-dimensional materials such as TaS3 [12], NbSe3 [13] and (DMe-
DCNQI)2Cu [14], but also has been verified by new experiments on K-TCNQ [15]. This
kind of dimensional effect induced by the weak interchain coupling can be viewed as a
general feature of chain-like systems and may have a profound effect on the magnetic
properties.

In this paper the SP transition is re-examined by paying special attention to the interchain
coupling effect. The interchain coupling is assumed to be weak enough that the 1D feature
remains the main one, and sufficiently finite to suppress the thermal fluctuation and to
modify the conventional 1D feature. In the following section we employ the extended JWT
in two dimensions (2D) to a quasi-1D SP system with a quantumXY -interaction. In section
3, we present the self-consistent equation for the dimerization order parameter and calculate
it numerically. Our numerical result seems to support a stepped SP transition. Finally, a
brief conclusion is given in section 4.

Figure 1. (i) The distribution of the phase factor; each thick line corresponds to a phase factor
of 1, and each thin line to a phase factor of e±iπ = −1. (ii) The dimerization pattern on a square
lattice; each thick and thin line along thex-axis represents stronger couplingJ+ = J0(1+ 2δu)
and weaker couplingJ− = J0(1−2δu), respectively. Each thin line along they-axis represents
the weak interchain couplingJ⊥ = αJ0. (iii) The dotted lines indicate the primitive unit cell
for both cases (i) and (ii).



The stepped spin–Peierls phase transition 2261

2. The Hamiltonian

We begin with the Hamiltonian of a 2D anisotropic quantumXY -model on a square lattice.
The Hamiltonian before dimerization is written as

Hxy = J
∑
i,j

{Sxi,j Sxi+x̂,j + Syi,j Syi+x̂,j } + J⊥
∑
i,j

{Sxi,j Sxi,j+ŷ + Syi,j Syi,j+ŷ}

= J

2

∑
i,j

{S−i,j S+i+x̂,j + S+i,j S−i+x̂,j } +
J⊥
2

∑
i,j

{S−i,j S+i,j+ŷ + S+i,j S−i,j+ŷ} (1)

where Si,j is the spin-1/2 operator atri,j = ix̂ + j ŷ, x̂ and ŷ are the unit vectors
along thex-axis andy-axis, J is the intrachain exchange integral along thex-axis, and
J⊥ is the interchain exchange integral along they-axis. There is no exact method for
mapping the 2D spin-1/2 operators onto the fermion representation via the conventional
JWT because the fermion operators defined on different chains in general commute instead
of anticommuting. However, one can generalize the conventional JWT to the 2D case by
using some approximative schemes [16, 17]. In this paper we adopt the transformation
given by Azzouz [17], which is defined on a square lattice as

S−i,j = ci,j exp{iφi,j } (2)

S+i,j = exp{−iφi,j }c†i,j (3)

φi,j = π
[ i−1∑
d=0

∞∑
f=0

n̂d,f +
j−1∑
f=0

n̂i,f

]
(4)

whereci,j is a spinless fermion annihilation operator atri,j = ix̂+ j ŷ, andn̂i,j = c†i,j ci,j
is the number operator atri,j . Thus, the on-site exclusion principle of spins and the
commutation relations are preserved. After substituting the extended JWT into the Hamil-
tonian (1), we have

Hxy = J

2

∑
i,j

(eiϕi,i+x̂;j c
†
i,j ci+x̂,j + HC)+ J⊥

2

∑
i,j

(c
†
i,j ci,j+ŷ + HC) (5)

where eiϕi,i+x̂;j = ei[(φi+x̂,j−φi,j )−πn̂i,j ] is a c-number. Equation (5) describes the effective
hopping for spinless fermions between nearest sites, of which the hopping amplitudes are
Je±iϕi,i+x̂,j in thex-direction (parallel to the chains), andJ⊥ in they-direction (perpendicular
to the chains). There are many different configurations for the phase factor eiϕi,i+x̂;j depending
on the spin configuration. Thus, we can get a state similar to the known mean-field solution
of the in-phase flux state [16] by choosing the phase factor as in figure 1, in which each thick
line corresponds to a phase factor of 1, and each thin line to a phase factor of e±iπ . This
distribution ensures that each of the elementary plaquettes encloses a net flux of half-quanta.

Since the undistorted state has been discussed thoroughly by several authors [16, 17],
we now turn to the dimerized state (dimerized along thex-axis). Among many dimerization
patterns on a square lattice, we choose one according to an elastic neutron scattering study
of CuGeO3 (see figure 1 of reference [18]). We note that this dimerization pattern coincides
with the distribution of the phase factor of the in-phase flux state, i.e., each thick and thin
line along thex-axis represents stronger couplingJ+ = J0(1+ 2δu) and weaker coupling
J− = J0(1− 2δu), respectively, while each thin line along they-axis represents the weak
interchain couplingJ⊥ = αJ0. HereJ0 is the exchange integral along thex-axis before
dimerization andδ = −dJ xi,j /du. The spin–lattice distortionu is treated quasiclassically
as Su, Schrieffer, and Heeger (SSH) [19] did for linear conducting chains. Following the
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Figure 2. (a) The energy spectrumεβk in equation (12) in the directions O→ Y, Y → X, and

X → O for α = 0.1, andη = 0.2. (b) The energy spectrumεβk in equation (12) in the direction
O→ Y for α = 0.1, η = 0.05, 0.1 and 0.2 respectively.

notation and the distribution of the coupling in figure 1, the dimerized Hamiltonian of the
quasi-1D spin-1/2 quantumXY -model can be expressed in terms of the spinless fermion
operators,a andb, of the two sublattices A and B, respectively:

H =
∑
ri,j∈A

{
−J−

2
(b
†
i−x̂,j ai,j + HC)+ J+

2
(a
†
i,j bi+x̂,j + HC)

+ αJ0

2
(b
†
i,j−ŷai,j + b†i,j+ŷai,j + HC)

}
+ 1

2

∑
ri,j∈A

K[(ui,j − ui−x̂,j )2+ (ui+x̂,j − ui,j )2] (6)

whereui,j = (−1)i+ju is the spin–lattice distortion, andK is the elastic constant. For
CuGeO3, the neutron scattering study [18, 20] shows the dimerization of Cu–Cu pairs along
the x-axis with an interatomic distance of 2.930̊A, and the separation between dimers is
2.955Å while the alternative coupling is about 120 K and 110 K. This allows us to assume
that u is negligible as compared with the lattice spacinga, and 2J0 δu is not negligible as
compared withJ0. Thus, the Hamiltonian (6) can be written in momentum space as

H = 1

2

∑
BZ′
{(−J−eikxa + J+e−ikxa + 2αJ0 coskya)a

†
kbk + HC} + 2NKu2 (7)
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where BZ′ is the magnetic Brillouin zone. This Hamiltonian (7) can be easily diagonalized
as

H =
{∑
BZ′

Eαk α
†
kαk + Eβk β†kβk

}
+ 2NKu2 (8)

with the energy spectra

Eαk = −
√
J 2

0 sin2 kxa + (2δu coskxa + αJ0 coskya)2 (9)

E
β

k =
√
J 2

0 sin2 kxa + (2δu coskxa + αJ0 coskya)2. (10)

It is evident that, in the pure 1D limit (α = 0), our energy spectraEαk andEβk coincide
with those obtained in previous SP theory [6]; and in the undistorted case, equations (9)
and (10) are reduced to the spectra of the in-phase flux state [16, 17].

Figure 3. The temperature (t-) dependences of the dimerization order parameterW(t) = 2η(t)
and the energy gap1(t) = 2(η(t)− α) for α = 0.1 andK ′ = 0.6107.

3. The order parameter and the stepped SP transition

For convenience, we define a set of reduced parameters:J0 = 1, a = 1, the reduced
temperaturet = kBT /J0, the dimerization order parameter

η =
∣∣∣∣J− − J+J+ + J−

∣∣∣∣
and the reduced elastic constantK ′ = K(J0/δ)

2. Thus the reduced energy spectra can be
written as

εαk = −
√

sin2 kx + (η coskx + α cosky)2 (11)

ε
β

k =
√

sin2 kx + (η coskx + α cosky)2. (12)

The spectrumεβk for α = 0.1 andη = 0.2 is shown in figure 2(a). In the directions O→ Y
and X→ O, it is in good agreement with the recent experimental results on CuGeO3
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Figure 4. The α-dependences of the dimerization temperature (tD) and the gap-opening
temperature (tG) for K ′ = 0.6107.

obtained using inelastic neutron scattering (see figure 5 and figure 8 of reference [20]; the
experimental result for the direction Y→ X is not available in this reference). From the
spectraεαk andεβk (figure 2(b)), we can see that the weak interchain coupling modifies the
spectra, and the energy gap becomes

1 = min(εβk )−max(εαk ) = 2(η − α). (13)

It turns out that, whenη(t = 0) < α 6= 0, 1 = 0 at any temperature, while dimerization is
permissible; whenη(t = 0) > α, the dimerization and the opening of the gap will occur at
different temperatures due to the different temperature dependences of1(t) andη(t). To
show these results in detail, we now turn to the numerical calculation. The reduced free
energy per unit cell can be derived by using the diagonalized Hamiltonian (8):

f = − 2

J0N
kBT lnZ = −2t

N
ln(Tr e−H/kBT )

= − 2t

N

{∑
BZ′

ln 2 cosh
Eαk

2t
+ ln 2 cosh

E
β

k

2t

}
+K ′η2

= − t
∫ ∫

BZ′

dkx dky
2π2

{
ln 2 cosh

εαk

2t
+ ln 2 cosh

ε
β

k

2t

}
+K ′η2. (14)

From the condition∂f /∂η = 0, we obtain the self-consistent equation for the dimerization
order parameterη(t):

K ′ =
∫ ∫

BZ′

dkx dky
8π2

(η coskx + α cosky) coskx

η

√
sin2 kx + (η coskx + α cosky)2

{
tanh

ε
β

k

2t
− tanh

εαk

2t

}
. (15)

Then, we can calculate the dimerization temperaturetD and the gap-opening temperature
tG numerically by settingη→ 0 whent → tD andη→ α when t → tG, respectively. The
numerical results are presented in figure 3 and figure 4.

Since the dimerization order parameterη(t) is a decreasing function of temperature
(figure 3),tG is always less thantD; thus there exists an intermediate-temperature region in
which the dimerization occurs while the gap does not open as can be seen from figure 3 and
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figure 4. This indicates that a gapless SP phase appears. So, the SP transition in this spin-
1/2 quasi-1D quantumXY -system is essentially a two-step process: the system is driven
into the gapless SP phase at the first critical temperaturetD; and the gap remains closed
until the temperature is lowered to the second critical temperaturetG at which the gap opens
and the gapped SP phase forms. We can also see thattD and tG depend crucially upon the
coupling ratioα. Only in the pure 1D case (α = 0) can the two critical temperaturestD and
tG coincide. Because the coupling ratioα in a real system is small, the gapless SP phase
is very narrow. Forα = 0.1, the difference betweentD and tG is estimated to be 0.01J0,
which is very small compared withtD = 0.11J0 (see figure 3). If we use the parameters for
CuGeO3 (α = 0.1, J0 = 125 K, Tsp = 14 K) [8, 21], the difference betweentD and tG is
estimated to be about 1.3 K. This may be why this gapless SP phase has not been observed
experimentally in the past. Anyway, our prediction of a gapless SP phase can be checked
by further experiments.tD can be measured in x-ray diffraction or NMR experiments, and
tG can be measured using inelastic neutron scattering. And magnetic materials with large
J0 and largeα are recommended for detecting this gapless SP phase.

4. Conclusion

In this paper we have studied the effect of the weak interchain coupling on the quasi-1D
spin-1/2 quantumXY -model by using an extended JWT in two dimensions. Our calculations
reveal that a new phase, i.e., the gapless SP phase, may occur between the conventional
uniform phase and the gapped SP phase. This indicates that the weak interchain coupling
can also lead to the appearance of a gapless SP phase, as the doping does [7].
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